基本情況
姓 名: |
李玮潔 |
|
職 務: |
|
|
職 稱: |
高聘教授 |
|
學 曆: |
|
|
學 位: |
博士 |
|
通信地址: |
北京市海澱區上園村3号伟德这个平台怎么样 |
|
郵 編: |
100044 |
|
辦公電話: |
|
|
電子郵箱: |
教育背景
2012.9 ~ 2017.6 伟德这个平台怎么样 力學系 博士(碩博連讀) 導師:黃海明教授 2008.9 ~ 2012.6 蘭州交通大學 工程力學系 學士 |
工作經曆
主要研究領域為新型高溫/超高溫材料設計與評價、航天輕量化材料/結構開發、極端環境下複合材料性能表征方法與使役性能研究。 中國複合材料學會青年工作委員會委員。入選中國科協“青年人才托舉工程”,伟德这个平台怎么样“卓越百人計劃”、中國複合材料學會優秀博士論文獲得者。 2017-2019年在北京理工大學先進結構技術研究院從事博士後研究工作。2019年11月到伟德这个平台怎么样工作。 主持國家重點研發計劃課題、軍委科技委基礎加強項目課題、HJJ裝備預研、國防技術領域基金項目專題、國家自然科學基金、航天科技合作項目等多項課題。在複合材料、力學和傳熱傳質領域國際期刊發表SCI檢索論文50餘篇(2篇ESI高被引論文),授權專利10餘項。 |
研究方向
|
招生專業
|
科研項目
1. 國家重點研發課題項目:C/C蜂窩夾層結構多目标匹配設計與優化,2022.11 ~ 至今,主持 2. 軍科委JCJQ重點基礎研究項目:XXX熱結構XXX一體化XXX,2023.9 ~ 至今,主持 3. HJJ裝備預先研究項目:XXX熱防護技術,2022.12 ~ 至今,主持 4. 軍科委JCJQ技術領域基金課題項目:高XX連續纖維增強複合材料XX一體化技術,2022.3 ~ 至今,主持 5. 紅果園省部級項目:複合材料XX結構建模與力學XX方法研究,2022.11 ~ 至今,主持 6. 航天科技合作項目:XX陶瓷基複合材料燒蝕機理與XX研究,2022.9 ~ 至今,主持 7. 航天科技合作項目:考慮XX材料響應數值模拟方法研究,2022.7 ~ 至今,主持
8. 航天科技合作項目:材料組織表征與性能分析,2022.5 ~ 至今,主持 9. 航天科技合作項目: 碳/碳複合材料樣件制備與測試,2022.3 ~ 2022.6,主持 10. 航天科技合作項目:輕質防熱XXX熱解狀态XXX分析,2022.3 ~ 至今,主持 11. 航天科技合作項目:碳纖維增強陶瓷基複合材料燒蝕XXX,2021.12 ~ 至今,主持
12. 航天科技合作項目:2.5D機織複合材料XXX無損檢測與失效機理,2021.12 ~ 2022.5,主持
13. 航天科技合作項目:輕質***典型材料***機理模型研究,2020.5 ~ 2021.1,主持 14. 伟德这个平台怎么样人才基金:新型防/隔熱結構一體化設計方法,2020.05 ~ 2023.03,主持 15. 國家自然科學基金青年基金項目:新型高效防隔熱結構一體化設計及熱阻塞效應微尺度理論模型研究,2019.01 ~ 2021.12,主持 |
教學工作
講授材料力學、理論力學、工程力學等。 歡迎本科生和研究生加入課題組! 歡迎對航天領域材料/結構研發感興趣的同學聯系與報考! |
論文/期刊
已發表50餘篇SCI檢索論文,其中,高被引論文2篇。近五年主要論文如下: [1] Haoran Liang, Weijie Li,*, Xiaoyan Liang, et al. Multiphase radiation mechanism based dual-scale ablation model for woven thermal protection materials[J]. Composites Science and Technology, 2024, 248: 110467. [2] Tongkai Wang, Weijie Li*, Zhongwei Zhang, et al. Analysis of the integrated performance of hybrid fiber-reinforced polymer composite used for thermal protection based on a dual-scale ablation model[J]. Aerospace Science and Technology, 2024, 145: 108831. [3] L.J. Guo, H.C. Wang, W.J. Li*, Z.W. Zhang*, et al. Multi-scale damage modeling and out-of-plane shear behavior of carbon/carbon honeycomb structure[J]. Thin-Walled Structures, 2023, 192: 111103. [4] H.R. Liang, W.J. Li*, T.K. Wang, et al. Optimal design of three-dimensional thermal protection structure considering orthotropic properties of woven composites based on Micro-CT image[J]. International Journal of Thermal Sciences, 2023, 194: 108579.
[5] L.J. Guo, H.C. Wang, Y.P. Yang, W.J. Li*, Z.W. Zhang*, et al. A multi-scale damage model and mechanical behavior for novel light-weight C/C honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, 25: 2097-2111. [6] D.H. Du, W.J. Li*, Z.W. Zhang*, et al. Design of domain-limited CVI reactor for L-shaped C/C structure[J]. Journal of Materials Research and Technology, 2023, 25: 5277-5293. [7] T.K. Wang, H.R. Liang, Z.H. Jiang, W.J. Li*, Z.W. Zhang*, et al. Influence of weaving parameters on thermal protection performance of gradient 3D woven composite[J]. Polymer Composites. [8] 楊玉平, 張中偉*, 李玮潔*, 等. 碳/碳蜂窩制備工藝及壓縮與剪切行為[J]. 複合材料學報, 2023, 41(0): 1-10. [9] Z.H. Jiang, T.K. Wang, W.J. Li*, Z.W. Zhang*, et al. Effect of weaving parameter and resin structure of lightweight integrated multifunctional composite on thermal protection performance in extreme environment[J]. Polymer Composites, 2023, 44(8): 4509-4518. [10] H.R. Liang, W.J. Li*, L.Y. Wang, et al. Effect of meso‐structure characteristics on surface emissivity of 2. 5D Woven ablative composite for thermal protection[J]. Polymer Composites, 2023, 44(6): 3209-3220. [11] Z.W. Zhang#, W.J. Li#, Y.P. Yang, et al. Fabrication and compressive performance of novel lightweight C/SiC honeycomb for ultrahigh stability structures[J]. Journal of Sandwich Structures & Materials, 2023, 25(4): 462-477. [12] W.J. Li, Z.W. Zhang, Z.H. Jiang, et al. Comprehensive performance of multifunctional lightweight composite reinforced with integrated preform for thermal protection system exposed to extreme environment[J]. Aerospace Science and Technology, 2022, 126: 107647. [13] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Novel strategy and multi-scale modelling of integrated multifunctional composite for thermal protection under extreme environment, Applied Thermal Engineering, 2022, 209: 118313. [14] W.J. Li, Z.W. Zhang, M.D. Zhu, et al. Heat insulation and ablation resistance performance of continuous fiber reinforced composites with integrated gradient fabric. Polymer Composites, 2022. [15] H.Z. Duan, Z.W. Zhang*, L.B. Li, W.J. Li*. Effect of pyrocarbon interphase texture and thickness on tensile damage and fracture in T‐700™ carbon fiber–reinforced silicon carbide minicomposites. Journal of the American Ceramic Society, 2022, 105(3): 2171-2181. [16] W.J. Li, H.R. Liang, Z.W. Zhang, J. Huang, H.M. Huang, J. Liang, Analysis of influence of fabric architecture and radiation characteristics on effective thermal conductivity of carbonized woven thermal protection composites, Acta Astronautica, 2021, 188: 387-399. [17] W.J. Li, J. Huang, Z.W. Zhang, L.Y. Wang, H.M. Huang, J. Liang, A model for thermal protection ablative material with local thermal non-equilibrium and thermal radiation mechanisms, Acta Astronautica, 2021, 183: 101-111. [18] W.J. Li, T.K. Wang, Z.W. Zhang, et al. Design of ablation resistant/heat insulation/lightweight integrated thermal protection material for extreme aerothermodynamic environment. Polymer Composites, 2021, 42(12): 6749-6763. [19] W.J. Li, J. Huang, Z.W. Zhang, et al. Evaluation and design methods for high‐efficiency charring composite under complex coupling mechanisms in both material and boundary layer. Journal of Applied Polymer Science, 2021, 138(1): 49615. [20] W.J. Li, J. Huang, Z.W. Zhang, H.M. Huang, J. Liang, L.Y. Wang, Evaluation method and key factor analysis for thermal protection performance of multifunctional integrated ablative materials, Polymer Composites, 2020, 41(12): 5043-5058. [21] W.J. Li, J. Huang, Z.W. Zhang, et al. Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites, Polymer Composites, 2020, 41(7): 2732-2743. [22] Z.C. Dong, Y.B. Liu, W.J. Li*, et al. Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism[J]. Journal of Alloys and Compounds, 2020: 155071.[23] Z.C. Dong, W.J. Li*, Q. Zhang, et al. Evaluation for multiple processing parameters in selective laser melting based on an integration of mesoscale simulation and experiment method[J]. Journal of Physics D: Applied Physics, 2020, 53(14): 145501. [24] Z.C. Dong, Y.B. Liu, W.J. Li*, J. Liang, Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices, Journal of Alloys and Compounds, 2019, DOI: https://doi.org/10.1016/j.jallcom.2019.03.344. [25] W.J. Li, J.R. Ge, J. Liang. Influence factors on the multi-field coupling performances of charring ablators on the basis of a mesoscopic ablation model, Applied Thermal Engineering, 2019, 161: 114126. [26] W.J. Li, J. Liang, J.R. Ge, Novel designs of charring composites based on pore structure control and evaluation of their thermal protection performance, International Journal of Heat & Mass Transfer, 2019, 129:59-73. [27] W.J. Li, H.M. Huang, X.L. Xu, A coupled thermal/fluid/chemical/ablation method on surface ablation of charring composites, International Journal of Heat & Mass Transfer, 2017, 109: 724-736. [28] W.J. Li, H.M. Huang, Z.M. Zhang, et al. Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux. Polymer Composites, 2016, 37(4): 1034-1041. (ESI) [29] H.M. Huang, W.J. Li. Influence factors of methane-air counterflow diffusion flame. Thermal Science, 2017, 21(4): 1689-1693. [30] W. Li, G.D. Fang, W.J. Li, et al. Role of mesoscopic features on thermochemical ablative behavior of 3D C/C braided composites. International Journal of Heat and Mass Transfer, 2019, 144: 118602. [31] W. Li, J. Zhang, G.D. Fang, W.J. Li. Evaluation of numerical ablation model for charring composites. Science China, 2019, DOI: https://doi.org/10.1007/s11431-018-9476-2. [32] 李偉, 方國東, 李玮潔, 王兵, 梁軍. 碳纖維增強複合材料微觀燒蝕行為數值模拟. 力學學報, 2019, http://kns.cnki.net/kcms/detail/11.2062.O3.20190118.0852.006.html. |
專著/譯著
|
專利
1. 一種輕質疏導-隔熱混雜編織熱防護材料及制備方法 2023 2. 一種高強粗糙碳纖維及其制備方法、提高碳纖維增強碳化矽複合材料界面結合強度的方法 2023 3. 一種高溫隔熱用碳/碳蜂窩夾層結構及其制備方法 2022 4. 一種聚碳矽烷共混樹脂熱熔預浸料的制備方法 2022 5.一種熱解碳界面相及其制備方法和應用、碳纖維增強碳化矽陶瓷基複合材料及其制備方法 2022 6.一種連續纖維增強熱防護材料及其制備方法 2022 7.一種交替沉積的多層熱解碳界面相的精細控制方法 2022 8.一種面向極端環境的熱防護材料多功能協同設計方法 2022 9.一種熱防護材料服役性能評價方法 2022 10. 用高能X射線進行原位成像的電控壓縮試驗機及試驗方法 2020 11. 一種用高能X射線進行原位成像的電控壓縮材料試驗機 2020 12. 一種用于***的熱環境***熱防護結構 2013 |
軟件著作權
變梯度PICA防熱材料的熱防護設計及評估軟件 2016 |
獲獎與榮譽
1. 中國科協“青年人才托舉工程” 2021 2. 中國複合材料學會優秀博士學位論文獎 2018 3. 伟德这个平台怎么样優秀博士位論文獎 2017 |
社會兼職
中國複合材料學會青年工作委員會委員 |