基本情況
姓 名: |
朱力 |
|
職 務: |
|
|
職 稱: |
教授 |
|
學 曆: |
博士研究生 |
|
學 位: |
博士 |
|
通信地址: |
伟德这个平台怎么样土木工程樓606室 |
|
郵 編: |
100044 |
|
辦公電話: |
010-51688247 |
|
電子郵箱: |
教育背景
2009-2014 清華大學獲博士學位(導師: 聶建國, 中國工程院院士, 清華大學學術委員會主任) 2005-2009 中南大學獲學士學位 (排名: 1/472)
|
工作經曆
2023至今 伟德这个平台怎么样 教授 2022至今 伟德这个平台怎么样 博士生導師 2019-2022 伟德这个平台怎么样 副教授 2016-2018 伟德这个平台怎么样 講師 2016-2017 伟德这个平台怎么样 美國伊利諾伊大學香槟分校 博士後 (合作導師: Billie F. Spencer, 中國工程院外籍院士) 2014-2016 伟德这个平台怎么样 博士後
|
研究方向
|
招生專業
|
科研項目
主持縱向科研項目: [10] 國家自然科學基金"面上項目": 長期變形和界面疲勞損傷耦合影響下高鐵組合橋梁動力性能的研究, 2025-2028. [9] 國家重大青年人才項目:高性能材料組合橋梁全生命周期受力性能和管養措施優化方法, 2024-2026. [8] 國家重點研發計劃“川藏鐵路”重點專項項目(子課題): 川藏鐵路高海拔深切峽谷區大跨度拱橋建造關鍵技術研究——複雜環境大跨度鐵路拱橋施工全過程抗風安全控制技術研究, 2023-2026. [7] 國家重點研發計劃“川藏鐵路”重點專項項目(任務): 高海拔深切峽谷區千米級大跨度懸索橋建造及耐久性保持關鍵技術研究——高原環境下大跨度鐵路懸索橋上部結構精細化計算程序研發, 2022-2023. [6] 河北省中央引導地方科技發展資金: 基于光纖傳感的橋梁支座監測系統與安全評價, 2022-2024. [5] 高速鐵路建造技術國家工程實驗室開放基金課題: 高鐵軌道-橋梁結構橋梁支座更換數值仿真與智能更換技術. 2021-2023. [4] 國家自然科學基金"青年基金": 曲線組合箱梁橋考慮多種力學、幾何和時變效應的梁單元模型及長期性能分析, 2017-2019. [3] 基本科研業務費(重點項目): 高速鐵路大跨鋼-混凝土組合連續橋梁結構全壽命周期設計理論與方法, 2018-2022. [2] 基本科研業務費 (人才基金): 組合箱梁橋的杆系模型和簡化分析方法, 2016-2017. [1] 基本科研業務費 (一般項目): 波形鋼腹闆組合橋的一維梁理論模型和時變行為分析, 2015-2016.
主持橫向科研項目: [10] 橋梁關鍵約束裝置微振動視覺增強監測技術研究. 2024. [9] 緩黏結低回縮錨索在混凝土箱梁中動載狀況下固化及相關性能研究. 2024. [8] 深中通道項目BIM成果彙編服務. 2023-2024. [7] 張靖臯長江大橋剛性接頭承載力智能預測軟件研發. 2023-2024. [6] 鐵路鋼混組合結構橋梁動力性能分析. 2022-2023. [5] 沉管隧道節點合理構造試驗研究. 2021-2022. [4] 鹽漬土地區橋涵基礎施工技術指南編制. 2021-2022. [3] 西藏地區耐候工字鋼組合梁橋建設關鍵技術研究. 2021-2022. [2] 雄安新區裝配式管廊試驗工程抗震性能試驗. 2020. [1] 曲線鋼混組合梁橋負彎矩區抗裂試驗研究. 2018-2019.
|
教學工作
主講本科生課程 《彈性力學及有限元》 《建築信息模型基礎》
主講研究生課程 《建築信息模型(BIM)高級應用》 《橋梁組合結構理論及應用》 《Bridge Engineering》
|
論文/期刊
期刊論文
[80] Gao C, Zhu L*, Han B, Zhang C, Su R. The analysis for fatigue caused by vibration of railway composite beam considering time-dependent effect. Advances in Bridge Engineering, 2024, 5: 1-20. [79] Zhu L*, Meng BW, Huo XJ, Liu W. Cable force optimization of cable-stayed bridges based on the influence matrix and elite genetic algorithm. Journal of Southeast University (English Edition), 2024, 40(2): 129-139. [78] Si J, Zhu L*, Ma W, Meng B, Dong H, Ning H, Zhao G. Study on vibration and noise of railway steel-concrete composite box girder bridge considering vehicle-bridge coupling effect. Buildings, 2024, 14: 2509. [77] Si J, Liu W*, Zhu L, Zhu Y, Zhao G, Hong J, Zhang C. Experimental study on mechanic behavior of flange joint for steel tube under axial tension. Buildings, 2024, 14: 2282. [76] Peng H, Meng B, Tan S*, Zhu L, Wang G. Study on Deformation control of road-deep foundation pit passing under elevated subway bridge. Applied Sciences, 2024, 14: 6357. [75] Li WW, Zhao LJ, Liu W, Zhu L*, Li P, Zhao GY, Zhu YY. Study on shear performance of discontinuous PBL connectors with double holes. Alexandria Engineering Journal, 2024, 88: 45-57. [74] Li J, Zhu L*, Ji WY, You SF. Development of a software platform for bridge modal and damage identification based on ambient excitation. High-Speed Railway, 2023, 1: 162-170. [73] Zhu L*, Su RKL, Liu W, Han TN, Chen C. Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip. Steel and Composite Structures, 2023, 48(2): 207-233. [72] Tang QC, Zhu L*. Vibration control of the steel-concrete composite box girder bridge with slip and shear-lag effects by MTMDs under train-bridge. Structural Control and Health Monitoring, 2023, doi.org/10.1155/2023/6696148.[71] Huo X, Chen J, Wang D, Zhu L*. A method for calculating strand tension in the anchor span of a suspension bridge considering the rotation of a splay saddle. High-Speed Railway, 2023, 1: 56-62. [70] Zhao G, Wang Y*, Zhu L*, Zhao J. Shear behavior of prestressed concrete T-beams strengthened by steel plate-concrete composite. Engineering Structures, 2023, 291: 116440. [69] 朱力*, 郭甲超, 季文玉, 查誠. 支座更換對高速鐵路梁軌結構的影響分析. 鐵道技術标準, 2023, 5(3): 33-44. [68] Zhu E, Li T, Liu L, Zhu L, Tian Y. Bond slip behavior of grout-filled concrete members with different interface materials. Advances in Materials Science and Engineering, 2022, doi.org/10.1155/2022/1235843. [67] 劉一迪, 朱力*, 陳曦, 季文玉. 基于BIM的橋梁有限元模型轉換與結構分析, 2022年工業建築學術交流會, 北京, 2022. [66] Lu W, Li F, Zhu L*, Li W, Peng W, Tang Y, Zhou Y, Su W, Zeng B. Study on the shear behavior of externally prestressed segmental glued concrete beams. Structures, 2023, 53: 47-61. [65] Lu W, Li F, Zhu L*, Zhang T, Zhou Y, Peng W, Zeng B. Experimental study on the direct shear behavior of multiple shear keys at concrete glue joints subjected to uneven normal stress. Structure and Infrastructure Engineering, 2023, doi.org/10.1080/15732479.2023.2191207. [64] Zhu L*, Zhao GY, Su RKL, Liu W, Wang GM. Time-dependent creep and shrinkage analysis of curved steel–concrete composite box beams. Mechanics of Advanced Materials and Structures, 2023, 30(3): 563-581. [63] Tang QC, Zhu L*, Li JZ. Hybrid control of steel-concrete composite girder bridges considering the slip and shear-lag effects with MR–TMD based on train-bridge interactions. Structures, 2023, 47: 2300-2318. [62] Liu L, Zhang L, Zhu L*, Li J, Yang Y, Hao L. Study on mechanical properties of stud connectors in steel-lightweight aggregate concrete composite structures. Structures, 2023, 47: 1072-1085. [61] Zhu L*, Su RKL, Ma JJ, Ni YJ. Experimental case study on the fatigue behavior of steel-concrete composite beams after chloride-induced corrosion and cyclic freeze-thaw. Journal of Bridge Engineering, 2023, 28(1): 05022012. [60] Zhao GY, Zhu L*, Liu W, Zhao JC, Huo JX. Numerical study on the effect of interface dynamic damage of steel-concrete composite beam bridge caused by high-frequency impact load. Buildings, 2023, 13: 545. [59] Liu W, Zhu L*, Ling LP, Zhao GY, Gao XB. Experimental and numerical study on the ultimate bearing capacity of a K-type tube-gusset plate joint of a steel transmission tower. Case Studies in Construction Materials, 2022, 17: e1523. [58] Lu WL, Li FL, Zhu L*, Wen CT, Peng WQ. Experimental study on the shear behavior of precast concrete segmental simply supported beam with internal tendons and glue joints. Case Studies in Construction Materials, 2022, 17: e1545. [57] Lu WL, Peng WQ, Zhu L*, Ma B, Li FL. Study on mechanical behavior of steel-UHPC-NC composite beams under negative bending moment. Case Studies in Construction Materials, 2022, 17: e1593. [56] Zhao GY, Liu W, Zhu L*, Li JH, Gao XB. Experimental and numerical study on the stable bearing capacity of steel tubular cross bracing of a transmission tower. Case Studies in Construction Materials, 2022, 17: e1577. [55] Lu WL, Peng WQ, Zhu L*, Gao C, Tang YD, Zhou YW, Su W, Zeng B. Experimental and numerical study of static behavior of precast segmental hollow bridge piers. Materials, 2022, 15: 6991. [54] Gao C, Zhu L*, Han B, Tang QC, Su R. Dynamic analysis of a steel-concrete composite box‐girder bridge-train coupling system considering slip, shear‐lag and time‐dependent effects. Buildings, 2022, 12: 1389. [53] Zhu YY, Song SY*, Liu W, Guo YW, Zhu L*, Li JX. Experimental and numerical investigation of the cross-sectional mechanical behavior of a steel-concrete immersed tube tunnel. Buildings, 2022, 12: 1553. [52] Zhao GY, Zhu L, Wu SW*, Liu W, Duan SJ. Experimental and numerical investigation on the cross-sectional mechanical behavior of prefabricated multi-cabin RC utility tunnels. Structures, 2022, 42: 466-479. [51] 劉俊鵬, 司金豔, 趙佳成, 唐慶宸, 朱力*, 任效佐. 重載鐵路橋梁抗剪加固措施. 鐵道建築, 2022, 62(5): 94-98. [50] Zhu L, Wang Y*, Zhou GP, Han B. Structural health monitoring on a steel-concrete composite continuous bridge during construction and vehicle load tests. Mechanics of Advanced Materials and Structures, 2022, 29(10): 1370-1385. [49] Ji XL, Zhu L*, Su RKL, Wang GM. Lateral overturning process and failure mechanism of curved steel-concrete composite box-girder bridges under specific overloading vehicles. Structures, 2022, 35: 638-649. [48] Peng H, Tang Q, Zhu L*, Li Z, Li H, Wang G. Deformation control of subway stations under the influence of the construction of deep and large foundation pits with composite support systems. Applied Sciences, 2022, 12(6): 3026. [47] Zhu L*, Su RKL, Huo JX, Wang GM. Test of the long-term behavior of curved steel-concrete composite box beams: case study. Journal of Bridge Engineering, 2021, 26(9): 05021009. [46] Zhu L, Li TS, Wang Y*, Tang QC, Wang GM, Zhang ZD. Experimental and numerical study on T-Shaped UHPFRC beams with high-strength reinforcement. Structural Concrete, 2021, 22: 3630-3645. [45] Zhu L*, Wang JJ, Li MJ. Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip. Engineering Structures, 2021, 232: 111797. [44] Zhu L, Ma Q, Yan WT*, Han B. Effective width of steel-concrete composite beams under negative moments in service stages. Steel and Composite Structures, 2021, 38(4): 415-430. [43] 王光明, 季鑫霖, 朱力*, 季文玉, 楊順達. 曲線鋼-混凝土組合箱梁橋的爬移行為. 伟德这个平台怎么样學報 (自然科學版), 2021, 45(1): 126-135. [42] Zhu L, Wang HL*, Han B, Zhao GY, Huo XJ, Ren XZ. Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag. Thin-Walled Structures, 2020, 157: 107060. [41] Zhu L, Wang JJ*, Li X, Tang L, Yu BY. Experimental and numerical study of curved SFRC and ECC composite beams with various connectors. Thin-Walled Structures, 2020, 155: 106938. [40] Zhu L, Wang JJ*, Li MJ, Chen C, Wang GM. Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip. Archives of Civil and Mechanical Engineering, 2020, 20: 101. [39] Zhu L*, Wang JJ, Zhao GY, Huo XJ, Li X. Experimental and numerical study on large-curvature curved composite box girder under hogging moment. Steel and Composite Structures, 2020, 37(2): 117-136. [38] Zhu L, Wang JJ*, Li X, Zhao GY, Huo XJ. Experimental and numerical study on creep and shrinkage effects of ultra high-performance concrete beam. Composites Part B, 2020, 184: 107713. [37] Wang GM, Zhu L*, Zhou GP, Han B, Ji WY. Experimental research of the time-dependent effects of steel-concrete composite girder bridges during construction and operation periods. Materials, 2020, 13(9): 2123. [36] Wang GM, Zhu L*, Ji XL, Ji WY. Finite beam element for curved steel–concrete composite box beams considering time-dependent effect. Materials, 2020, 13(15): 3253. [35] Jiao YY, Han B*, Xie HB, Zhu L, Zhou LD. Early-age creep behavior of Concrete-Filled Steel Tubular members subjected to axial compression. Journal of Constructional Steel Research, 2020, 166: 105939. [34] Li WW*, Ji WY, An MZ, Zhu L, Wang J. Flexural performance of composite prestressed UHPC-NC T-girders. ASCE-Journal of Bridge Engineering, 2020, 25(9): 04020064. [33] Yan W, Han B*, Xie HB, Li PF, Zhu L. Research on numerical model for flexural behaviors analysis of precast concrete segmental box girders. Engineering Structures, 2020, 219: 110733. [32] 李旺旺*, 季文玉, 朱力, 班新林, 劉昂, 顧金柱. 重載車橋耦合作用下48m鋼桁梁橋動力性能. 鐵道工程學報, 2020, 37(1): 31-37+61. [31] Yan WT, Han B*, Zhu L, Jiao YY, Xie HB. A fiber beam element model for elastic-plastic analysis of girders with shear lag effects. Steel and Composite Structures, 2019, 32(5): 657-670. [30] 朱力*, 李明傑, 陳超, 孫海秀, 韓冬, 趙元鵬. 曲線鋼-混凝土組合箱形梁的約束扭轉、畸變和界面雙向滑移效應. 建築結構學報, 2019, 40(S1): 299-307. [29] Zhou G*, Li A, Li J, Duan M, Xia ZY, Zhu L, Spencer BF, Wang B. Test and numerical investigations on the spatial mechanics characteristics of extra-wide concrete self-anchored suspension bridge during construction. International Journal of Distributed Sensor Networks, 2019, 15(12): 1177. [28] Zhou G*, Li A, Li J, Duan M, Xia Z, Zhu L. Determination and implementation of reasonable completion state for the self-anchored suspension bridge with extra-wide concrete girder. Applied Sciences, 2019, 9(12): 2576. [27] Han B*, Yan WT, Cu VH, Zhu L, Xie HB. H-TMD with hybrid control method for vibration control of long span cable-stayed bridge. Earthquakes and Structures, 2019, 16(3): 349-359. [26] Zhou G*, Li A, Li J, Duan M, Spencer BF, Zhu L. Beam finite element including shear lag effect of extra-wide concrete box girders. ASCE-Journal of Bridge Engineering, 2018, 23(11): 04018083. [25] Yan WT, Han B*, Jin Q. Zhang JQ, Xie HB, Zhu L, Xue ZJ. Experimental study on creep behavior of fly ash concrete filled steel tube circular arches. Steel and Composite Structures, 2018, 27(2): 185-192. [24] Zhang J, Han B*, Xie H, Zhu L, Zheng G, Wang W. Correlation between coda wave and stresses in uni-axial compression concrete, Applied Sciences, 2018, 8(9): 1609. [23] Zhu L, Fu Y, Chow R, Spencer BF*, Park JW, Mechitov K. Development of a high-sensitivity wireless accelerometer for structural health monitoring. Sensors, 2018, 18(1): 262. [22] Han B*, Xie HB, Yan WT, Lei DC, Zhu L, Wang YQ, Li H. Scour risk analysis of existing bridge pier based on inversion theory. Structural Engineering International, 2018, 28(1), 35-43. [21] Zhu L, Su RKL*. Analytical solutions for composite beams with slip, shear-lag and time-dependent effects. Engineering Structures, 2017, 152, 559-578. [20] Zhu L*, Nie J, Ji W. Positive and negative shear lag behaviors of composite twin-girder decks with varying cross-section. Science China Technological Sciences, 2017, 60(1): 116-132. [19] Ji W, Li W*, An M, Zhu L. Shear capacity of T-section girders made of reactive powder concrete. ASCE-Journal of Bridge Engineering, 2018, 23(7): 04018041. [18] 季文玉, 李旺旺*, 付堯, 盧文良, 朱力. 預應力活性粉末混凝土受彎過程聲發射特性. 複合材料學報, 2018, 35(10): 2860-2870. [17] Han B*, Xie HB, Zhu L, Jiang P. Nonlinear model for early age creep of concrete under compression strains. Construction and Building Materials, 2017, 147: 203-211. [16] Han B*, Jiao Y, Xie H, Zhu L. Creep of compression fly ash concrete-filled steel tubular members. Thin-walled structures, 2017, 114: 116-121. [15] 朱力*, 聶建國, 季文玉. 鋼-混凝土組合箱型梁的滑移和剪力滞效應. 工程力學, 2016, 33(9): 49-58. [14] Zhu L*, Nie J, Li F, Ji W. Simplified analysis method accounting for shear-lag effect of steel-concrete composite decks. Journal of Constructional Steel Research, 2015, 115: 62-80. [13] 聶建國*, 陶慕軒, 聶鑫, 樊健生, 張振學, 湯洪雁, 朱力, 李一昕. 抗拔不抗剪連接新技術及其應用. 土木工程學報, 2015, 48(4): 7-14. [12] Nie J, Zhu L*. Beam-truss model of steel-concrete composite box-girder bridges. ASCE-Journal of Bridge Engineering, 2014, 19(7): 04014023. [11] Nie J, Zhu L*. Lateral stiffness of steel plate shear walls. Science China Technological Sciences, 2014, 57(1): 151-162. [10] 聶建國*, 朱力, 樊健生, 李法雄. 鋼-混凝土組合箱梁橋杆系模型的工程應用. 中國公路學報, 2014, 27(9): 32-40. [9] 聶建國*, 朱力, 樊健生, 楊小剛. 鋼-混凝土組合箱梁橋杆系模型的理論與計算. 中國公路學報, 2014, 27(7): 32-44. [8] Nie J, Zhu L*, Fan J, Mo Y. Lateral resistance capacity of stiffened steel plate shear walls. Thin-Walled Structures, 2013, 67: 155-167. [7] Nie J, Zhu L*, Tao M, Tang L. Shear strength of trapezoidal corrugated steel webs. Journal of Constructional Steel Research, 2013, 85: 105-115. [6] 朱力*, 聶建國, 樊健生. 開洞鋼闆剪力牆的抗側剛度分析. 工程力學, 2013, 30(9): 200-210. [5] 聶建國, 朱力*, 樊健生, 範重, 劉學林. 開洞加勁鋼闆剪力牆的抗側承載力分析. 建築結構學報, 2013, 34 (7): 1-10. [4] 朱力, 蔡建軍*, 聶建國. 波形鋼腹闆的彈性剪切屈曲強度. 工程力學, 2013, 30(7): 40-46. [3] 聶建國*, 朱力, 唐亮. 波形鋼腹闆的抗剪強度. 土木工程學報, 2013, 46(6): 1-13. [2] 聶建國*, 朱力, 樊健生, 範重, 劉學林. 鋼闆剪力牆抗震性能試驗研究. 建築結構學報, 2013, 34(1): 61-69. [1] 張振學*, 聶建國, 陶慕軒, 朱力. 鋼-混凝土連續組合桁梁橋受力性能優化. 橋梁建設, 2012, 42(6): 57-62.
會議報告 [17] 耐候鋼-混凝土組合梁氯鹽腐蝕過程及受力性能研究. 第二屆交通基礎設施工程韌性提升與可持續發展高峰論壇, 2024, 9, 威海. [16] 鐵路鋼-混組合橋梁的振動控制. 第一屆山區鐵路建造與防災學術研讨會暨2023深水大跨橋梁新進展研讨會, 2023, 12, 成都. [15] 考慮滑移和剪力滞效應的組合箱梁橋-列車耦合系統動力分析. 第五屆江蘇省工程師學會風工程學術會議暨基礎設施智能抗風防災及韌性提升國際論壇, 2023, 6, 南京. [14] 曲線鋼-混凝土組合橋梁的高效計算模型、關鍵設計理論和工程應用. 中國公路學會橋梁和結構工程分會, 2023, 4, 珠海. [13] Numerical simulation of interface slip of steel-concrete composite beam. The 4th International Conference on Civil Architecture and Urban Engineering. ICCAUE 2022, June, China. [12] Experimental and Numerical Study of Curved SFRC and ECC Composite Beams with Various Connectors. Proceedings of International Association for Bridge and Structural Engineering, 2022, September, Nanjing. [11] Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag. The 4th International conference on Engineering Innovation and Seismic Mitigation of Bridges, 2021, November, Changsha. [10] 曲線鋼-混凝土組合箱形梁的約束扭轉、畸變和界面雙向滑移效應. 中國鋼結構協會鋼-混凝土組合結構分會第十七次學術會議, 2019, 11, 南京. [9] 變截面鋼-混凝土組合梁的剪力滞效應. 中國鋼結構協會鋼-混凝土組合結構分會第十六次學術會議, 2017, 11, 北京. [8] Earthquake Monitoring of Civil Infrastructure using Wireless Smart Sensors. 3rd Huixian International Forum on Earthquake Engineering for Young Researchers, 2017, August, University of Illinois at Urbana-Champaign, US. [7] Negative shear-lag behavior of steel-concrete composite twin-girder decks. 14th International Symposium on Structural Engineering, 2016, October, Beijing, China. [6] Shear Strength of Trapezoidal Corrugated Steel Webs. 5th International Conference on Civil Engineering and Transportation, 2015, November, Guangzhou, China. [5] 鋼-混凝土組合箱梁橋杆系模型的研究. 中國鋼結構協會鋼-混凝土組合結構分會第十五次學術會議, 2015, 10, 重慶. [4] Lateral resistance capacity of stiffened steel plate shear walls. Pacific Structural Steel Conference, 2013, October, Singapore. [3] Lateral stiffness of steel plate shear walls. Pacific Structural Steel Conference, 2013, October, Singapore. [2] Seismic behavior of steel plate shear walls. Proceedings of Seventh International Conference on Advances in Steel Structures, 2012, April, Nanjing, China. [1] 波形鋼腹闆的彈性合成剪切屈曲強度. 中國鋼結構協會鋼-混凝土組合結構分會第十三次學術會議, 2011, 11, 廣州.
|
專著/譯著
[2] 朱力, 劉智敏. 建築信息模型 (BIM) 高級技術與應用. 清華大學出版社/伟德这个平台怎么样出版社, 2023. [1] 朱力. 鋼混組合橋梁結構的計算模型及設計方法. 中國鐵道出版社, 2021.
|
專利
[19] 朱力, 劉偉, 王照, 李佳歡, 趙冠遠. 混凝土組合箱形梁橫橋向傾覆過程及破壞特征分析系統. 中國, 國家知識産權局, ZL202410112106.4 [18] 朱力, 司金豔, 劉偉, 李佳歡, 王照, 趙冠遠. 曲線組合箱梁橋的梁格杆系模型系統. 中國, 國家知識産權局, ZL202410072729.3 [17] 朱力, 盧冠楠, 司金豔, 李廷剛, 劉偉, 王照, 李佳歡. 采用連接件和材料的組合梁的力學試驗系統. 中國, 國家知識産權局, ZL202410072725.5 [16] 朱力, 唐慶宸, 李佳歡, 劉一迪, 韓天楠. 一種考慮時變效應的組合梁橋動力疲勞性能分析方法. 中國, 國家知識産權局, ZL202211078634.X [15] 朱力, 唐慶宸, 李佳歡, 劉一迪, 韓天楠. 一種考慮時變效應的組合梁橋動力疲勞可靠性評估方法. 中國, 國家知識産權局, ZL202211078712.6 [14] 朱力, 趙冠遠, 霍金鑫, 季鑫霖, 劉一迪, 趙利佳. 一種基于多種複雜力學效應的車橋耦合動力分析系統. 中國, 國家知識産權局, ZL202111584474.1 [13] 朱力, 趙冠遠, 韓天楠, 段勝傑, 查誠, 張維舉. 基于力學效應的車橋耦合用振動分析系統. 中國, 國家知識産權局, ZL202111538296.9 [12] 朱力, 趙冠遠, 李嘉欣, 尤孫鋒, 李佳歡, 李雙宇. 一種基于數值分析的連接件組合梁分析系統. 中國, 國家知識産權局, ZL202111495413.8 [11] 朱力, 趙冠遠, 劉偉, 蘇瑞, 趙佳成, 郭甲超. 一種基于曲線組合梁模型的混凝土精度管控系統. 中國, 國家知識産權局, ZL202111463654.4 [10] 朱力, 趙冠遠, 呂榮, 唐慶宸, 陳曦, 張曉虎. 一種基于鋼筋應力的裂縫寬度纖維梁分析系統. 中國, 國家知識産權局, ZL202210000657.2
[9] 朱力, 韓天楠, 趙佳成, 王光明, 司金豔, 王灏. 一種曲線鋼-混凝土組合梁的連接構造. 中國, 國家知識産權局, ZL202221453723.3
[8] 朱力, 唐慶宸, 呂榮, 王光明, 司金豔, 王灏. 一種曲線鋼-混凝土組合梁的剪力連接件. 中國, 國家知識産權局, ZL202221412317.2 [7] 朱力, 呂榮, 韓天楠, 司金豔, 王光明, 王灏. 拼接型裝配式曲線鋼-混凝土組合梁. 中國, 國家知識産權局, ZL202221412269.7 [6] 朱力, 杜谷春, 李明傑, 李軒, 趙旭. 大曲率曲線鋼-混凝土組合箱梁橋簡化設計方法. 中國, 國家知識産權局, ZL201810461830.2 [5] 朱力, 李明傑, 陳超, 唐亮, 張甲振, 田超. 曲線鋼-混凝土組合箱型梁一維梁單元模型的建立方法. 中國, 國家知識産權局, ZL201910602286.3 [4] 朱力, 李明傑, 季文玉, 李軒. 曲線鋼-混凝土組合箱型梁一維有限元模型的構建方法. 中國, 國家知識産權局, ZL201910315189.6 [3] 朱力, 倪永軍, 馬觀領, 劉昂, 顧金柱, 趙科, 趙元鵬. 一種預制裝配式組合梁結構. 中國, 國家知識産權局, ZL201921040386.3 [2] 朱力, 倪永軍, 羅鑫源, 劉昂, 顧金柱. 凍融循環作用下的疲勞試驗裝置. 中國, 國家知識産權局, ZL201921040387.8 [1] 趙文忠, 韓冰, 魯榮利, 朱力, 李新傑, 張鵬飛, 張超, 王雪峰. 鋼-混凝土組合梁界面滑移測量傳感器. 中國, 國家知識産權局, ZL201822061313.4
|
軟件著作權
[9] 曲線鋼-混凝土組合橋梁爬移分析計算程序軟件V1.0. 中國, 國家版權局, 2022SR0819003 (已授權).
[8] 曲線鋼-混凝土組合橋梁抗傾覆分析計算程序軟件V1.0. 中國, 國家版權局, 2022SR0819002 (已授權). [7] 曲線鋼-混凝土組合橋梁基于應力的簡化方法計算系統V1.0. 中國, 國家版權局, 2022SR0800693 (已授權). [6] 曲線鋼-混凝土組合橋梁高精度杆系模型計算系統V1.0. 中國, 國家版權局, 2022SR0797493 (已授權). [5] 曲線梁截面特性計算軟件V1.0. 中國, 國家版權局, 2021SR1159560 (已授權). [4] 曲線組合箱型梁考慮彎扭耦合複雜受力效應的模型分析軟件V1.0. 中國, 國家版權局, 2021SR1159503 (已授權). [3] 曲線組合箱型梁的梁格模型計算分析軟件V1.0. 中國, 國家版權局, 2021SR1159159 (已授權). [2] 橋梁結構模态識别分析系統V1.0. 中國, 國家版權局, 2020SR1067590 (已授權). [1] 既有橋梁上部結構體系時變可靠性分析系統V1.0. 中國, 國家版權局, 2019SR0540557 (已授權).
|
獲獎與榮譽
科研 [11] 2022年中國交通運輸協會科技創新青年獎 (排名: 1/1) [10] 2022年交通運輸部重大科技創新成果 (排名:1/15) [9] 2021年中國交通運輸協會科學技術進步一等獎 (排名: 1/15) [8] 2021年北京市軌道交通學會傑出青年人才獎 (排名: 1/1) [7] 2021年中國公路學會科學技術進步二等獎 (排名: 6/10) [6] 2021年北京市軌道交通學會科學技術進步一等獎 (排名: 3/15) [5] 2021年北京市軌道交通學會科學技術進步二等獎 (排名: 5/10) [4] 2019年中國鋼結構協會科學技術獎特等獎 (排名: 15/20) [3] 2018年中國鐵道學會學術活動二等優秀論文 [2] 2014年領跑者5000—中國精品科技期刊頂尖學術論文 [1] 2011年中國鋼結構協會鋼-混凝土組合結構分會第五屆精工杯青年優秀論文二等獎
教學
[3] 2020-2021年伟德这个平台怎么样教學成果二等獎 [2] 2016-2017年伟德这个平台怎么样教學成果二等獎 [1] 2016-2017年伟德这个平台怎么样土建院教學基本功比賽二等獎
綜合 [5] 2023年伟德这个平台怎么样智瑾獎優秀青年教師 [4] 2022年伟德这个平台怎么样“五四獎章” [3] 2022年伟德这个平台怎么样青年英才培育計劃I類人才 [2] 2021年伟德这个平台怎么样青年英才培育計劃II類人才 [1] 2021年伟德这个平台怎么样雙青培育計劃人才
|
社會兼職
[3] 中國公路學會橋梁和結構工程分會理事 [2] “High-Speed Railway”期刊青年編委 [1] “ 華東交通大學學報” 期刊青年編委 |