[英文期刊]
[28] Lu X, Xu H, Xu LH. Self-centering friction beam-column joint: A promising approach to seismic and progressive collapse resilience, Structures, 2024, 65: 106743.
[27] Lu X, Lei JH, Han MM. Seismic responses and loss evaluation of RC frame with slotted infill walls[J], Engineering Structures, 2024, 311: 118214.
[26] Lu X, Sun WH, Xu LH. Experimental investigation on seismic behavior of damaged self-centering friction beam-column joints after repair[J], Engineering Structures, 2024, 310: 118135.
[25] Lu X, Liu B, Sun W, Xu LH. Seismic performance investigation on self-centering friction frames: Collapse capacity and post-earthquake recovery [J]. Soil Dynamics and Earthquake Engineering, 2024, 179: 108555.
[24] Lu X, Xie LL, Lv QL. Enhance the resilience of steel outrigger by equipping GFRP tendons and viscoelastic material[J]. Journal of Earthquake Engineering. 2024, 28(3): 866-883, DOI: 10.1080/13632469.2023.2220421.
[23] Lu X, Xu H, Zhang XM, Xie LL. Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints [J]. Engineering Structures, 2023,285:116062.
[22] Lu X, Lv ZK, Xu LH. Investigation of a self-centering frictional energy dissipation outrigger equipped to supertall buildings[J]. Journal of Building Engineering, 2022, 61:105313.
[21] Lu X, Ji Xinru, Yan ZJ. Seismic collapse assessment of reinforced concrete frames infilled with hollow concrete bricks [J]. Journal of Building Engineering, 2022, 59:105156.
[20] Lu X, Yan Z. Development and validation of a modified equivalent strut model of lightweight masonry block infill walls for quasi-static in-plane cyclic analysis[J]. Journal of Earthquake Engineering, 2022, 26(15):7901-7920. Doi: 10.1080/13632469.2021.1988762.
[19] Lu X, Chen A. Quantitative evaluation and improvement of seismic resilience of a tall frame shear wall structure[J]. The Structural Design of Tall and Special Buildings, 2022, 31(1): e1899, Doi: 10.1002/tal.1899 .
[18] Lu X, Zha S. Full-scale experimental investigation of the in-plane seismic performance of a novel resilient infill wall[J]. Engineering Structures, 2021, 232: 111826.
[17] Lu X, Lv ZK, Lv QL. Self‐centering viscoelastic diagonal brace for the outrigger of supertall buildings: Development and experiment investigation [J]. The Structural Design of Tall and Special Buildings, 2020, 29(1): e1684.
[16] Hu RP, Xu YL, Lu X, Zhang CD, Zhang QL, Ding JM. Hu R, Xu Y, Lu X, et al. Integrated multi‐type sensor placement and response reconstruction method for high‐rise buildings under unknown seismic loading[J]. The Structural Design of Tall and Special Buildings, 2018, 27(6): e1453.
[15] Zhang L, Lu XZ, Guan H, Xie LL, Lu X. Floor acceleration control of super‐tall buildings with vibration reduction substructures[J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): e1343.
[14] Tian Y, Lu X, Lu XZ, Li MK, Guan H. Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthquakes and Structures, 2016,11(6), 925-942.
[13] Lu X, Lu XZ, Guan H, Xie LL. Application of earthquake-induced collapse analysis in design optimization of a super-tall building, The Structural Design of Tall and Special Buildings, 2016, 25(17): 926-946.
[12] Lu XZ, Xie LL, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building. Engineering Structures, 2016,110, 116-126.
[11] Lu ZX, Li MK, Guan H, Lu X, Ye LP. A comparative case study on seismic design of tall RC frame‐core‐tube structures in China and USA. The Structural Design of Tall and Special Buildings, 2015,24 (9), 687-702.
[10] Lu XZ, Xie LL, Guan H, Huang YL, Lu X. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design 2015,98, 14-25.
[9] Xie LL, Lu XZ, Guan H, Lu X. Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure. Journal of Earthquake Engineering, 2015,19 (8), 1320-1344.
[8] Lu X, Lu XZ, Sezen H, Ye LP. Development of a simplified model and seismic energy dissipation in a super-tall building. Engineering Structures, 2014,67, 109-122.
[7] Li MK, Lu X, Lu XZ, Ye LP. Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering,2014,6 (5), 477-485.
[6] Lu X, Ye LP, Lu XZ, Li MK, Ma XW. An improved ground motion intensity measure for super high-rise buildings. Science China Technological Sciences, 2013,56 (6), 1525-1533.
[5] Lu XZ, Lu X, Guan H, Zhang WK, Ye LP. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. Journal of Constructional Steel Research, 2013,82, 59-71.
[4] Lu X, Lu XZ, Guan H, Ye LP. Collapse simulation of reinforced concrete high‐rise building induced by extreme earthquakes. Earthquake Engineering & Structural Dynamics, 2013,42 (5), 705-723.
[3] Lu X, Lu XZ, Guan H, Ye LP. Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings. Advances in Structural Engineering, 2013,16 (7), 1249-1262.
[2] Xu Z, Lu XZ, Guan H, Lu X, Ren AZ. Progressive-collapse simulation and critical region identification of a stone arch bridge. Journal of Performance of Constructed Facilities, 2012,27 (1), 43-52.
[1] Lu X, Lu XZ, Zhang WK, Ye LP. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. Science China Technological Sciences,2011,54 (10), 2549-2560.
[中文期刊]
[27] 盧嘯, 孫偉豪. 帶摩擦型自複位節點的混凝土框架結構地震響應與易損性研究[J]. 工程力學, 2024. doi: 10.6052/j.issn.1000-4750.2023.12.0902
[26] 盧嘯, 徐航, 張雪敏. 摩擦型自複位梁柱節點的滞回與損傷性能研究[J]. 工程力學, 2024, doi: 10.6052/j.issn.1000-4750.2023.03.0197.
[25] 李波, 胡濤, 田玉基, 劉悅, 盧嘯, 張範, 宋曉峰, 白凡. 北京2022年冬奧會内場主火炬抗風性能研究[J]. 工程力學. 2024, 41(10): 43-48.
[24] 盧嘯, 紀欣如. 考慮填充牆力學貢獻的規範RC框架辦公樓抗震韌性評價. 工程力學, 2024, 41(9): 69-78.
[23] 孫靜, 吳君怡, 盧嘯. 框支密肋複合牆結構地震易損性研究[J]. 工程力學. 2023, 40(6): 61-72.
[22] 葉列平, 金鑫磊, 田源, 陸新征, 缪志偉, 曲哲, 林旭川, 盧嘯. 建築結構抗震“體系能力設計法”綜述[J]. 工程力學, 2022, 39(5): 1-12.
[21] 盧嘯, 查淑敏. 一種新型分縫耗能砌體填充牆的抗震性能試驗與有限元分析. 工程力學, 2021, 38(11): 105-113.
[20] 盧嘯. 鋼筋混凝土框架核心筒結構地震韌性評價. 建築結構學報, 2021, 42(5): 55-63.
[19] 盧嘯, 呂泉林. 自複位粘彈性腹杆的力學原理與滞回性能研究. 工程力學, 2019, 36(6): 138-146.
[18]盧嘯, 呂泉林, 徐龍河, 李易. 基于伸臂桁架多尺度模型的超高層建築地震災變評估. 天津大學學報(自然科學與工程技術版), 2018, 51(5): 539-546.
[17]徐龍河, 于紹靜, 盧嘯. 基于損傷控制函數與失效概率的結構抗震性能多目标優化與評估. 工程力學2017, 34(10): 61-67.
[16] 徐龍河,肖水晶,盧嘯,李忠獻. 鋼筋混凝土剪力牆基于變形和滞回耗能非線性組合的損傷演化分析. 工程力學, 2017,34(8): 117-124.
[15] 盧嘯, 陸新征, 李夢珂, 顧棟煉, 解琳琳. 地震作用設計參數調整對框架結構抗震設計及安全性的影響. 工程力學, 2017, 34(4):22-31.
[14] 盧嘯,楊蔚彪,張萬開,宮貞超,陸新征,常為華. 某超高層建築不同抗側力體系抗震性能對比研究. 建築結構學報. 2016,37(4), 102-109.
[13] 林楷奇, 解琳琳, 陸新征, 盧嘯. 基于開源計算程序的特大跨斜拉橋地震災變及倒塌分析. 工程力學, 2016,33 (1), 72-80.
[12] 李夢珂, 盧嘯, 陸新征, 葉列平. 中美高層鋼筋混凝土框架-核心筒結構抗震設計對比. 工程力學, 2015, 52-61.
[11] 盧嘯, 陸新征, 葉列平, 李夢珂. 适用于超高層建築的改進地震動強度指标.建築結構學報. 2014,35 (2), 15-21.
[10] 盧嘯, 甄偉, 陸新征, 葉列平. 最小地震剪力系數對超高層建築結構抗震性能的影響. 建築結構學報, 2014,88-95
[9] 陸新征, 盧嘯, 李夢珂, 葉列平, 馬曉偉. 上海中心大廈結構抗震分析簡化模型及地震耗能分析. 建築結構學報, 2013,34 (7), 1-10
[8] 盧嘯, 陸新征, 葉列平. 超高層建築地震動強度指标探讨.土木工程學報, 2012,45, 292-296.
[7] 何水濤, 陸新征, 盧嘯, 曹海韻. 超高車輛撞擊鋼橋上部結構模型試驗研究.振動與沖擊, 2012,31 (5), 31-35.
[6] 陸新征, 張萬開, 盧嘯, 柳國環. 超級巨柱的彈塑性受力特性及其簡化模型. 沈陽建築大學學報 (自然科學版), 2011,27, 409-417.
[5] 陸新征, 盧嘯, 張炎聖, 何水濤. 超高車輛撞擊橋梁上部結構撞擊力的工程計算方法. 中國公路學報, 2011,24 (2), 49-55
[4] 何水濤, 陸新征, 盧嘯, 曹海韻. 超高車輛撞擊鋼筋混凝土 T 梁橋主梁試驗研究. 蘭州交通大學學報, 2011,30 (6), 20-25
[3] 盧嘯, 陸新征, 葉列平, 何水濤. 鋼筋混凝土拱橋構件重要性評價及超載導緻倒塌破壞模拟.計算機輔助工程, 2010,19 (3), 26-30.
[2] 盧嘯, 陸新征, 張勁泉, 宋建永, 葉列平. 某石拱橋連續倒塌模拟及構件重要性評價. 蘭州交通大學學報, 2010,29 (6): 25-30.
[1] 陸新征, 張炎聖, 何水濤, 盧嘯. 超高車輛撞擊橋梁上部結構研究: 損壞機理與撞擊荷載. 工程力學, 2009,26 (2), 115-124.
|